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Generalized formula for the first derivative of the electric-field intensity
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This paper presents a derivation for a general formula relating the first derivative of the electric-
field intensity in any direction to the first derivative of the direction cosines in the orthogonal
direction. A restricted form of the formula valid only in the direction of the field lines was first
stated by Thomson, and later proved by others. The general form proved here promises to be useful
in other attempts to apply techniques of differential geometry to the rapid solution of field problems.

PACS number(s): 41.20.-q, 02.40.-k

INTRODUCTION

Since 1985, a few attempts have appeared making use
of concepts from differential geometry to calculate vari-
ables in the electrostatic field [1-4]. Estevez and Bhuiyan
[1] presented a power-series solution to a problem given
by Jackson [5] and originally stated by Thomson [8].
The problem requires the proof that at the surface of
a charged conductor, the normal derivative of the mag-
nitude of the electric field F satisfies
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where R; and R are the principal radii of curvature of
the surface at the point under consideration, and n is
the normal direction to the surface at the same point.
Later, Pappas [2] presented an elegant proof for the same
formula. Recently, Zhou [4] used this formula to obtain
relations for field magnitudes at two points along a flux
line in the electrostatic field.

In this paper, it will be shown that formula (1) is, in
fact, a special case of a general formula that gives the
derivative of the electric-field intensity in any direction
within the field, not necessarily the direction normal to
an equipotential surface.

The need for a generalized formula for the first deriva-
tive of the field intensity arose from attempts to solve
Laplace’s equation geometrically. While such an applica-
tion is beyond the scope of this paper, it is to be pointed
out that 0| E||/0n = |0%V/On?|, where V is the poten-
tial. When Laplace’s equation is considered, we further
note that
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at any point; however, 82V/0n? # 0 at the same point,
where n is the direction of the flux line. Therefore, it
was necessary to find a general formulation for the sec-
ond derivative of potential when the coordinate system
is arbitrarily oriented, i.e., a formulation for the compo-
nents 82V/8x2, etc. of Laplace’s equation.

A GENERALIZED FORMULA FOR THE FIRST
DERIVATIVE OF THE ELECTRIC-FIELD
INTENSITY

Although the following derivation can be carried in any
number of dimensions, a two-dimensional (2D) analysis
will be given here to avoid the mathematical complex-
ity which obscures the underlying physics. The corre-
sponding 3D analysis is summarized in the Appendix.
The derivation assumes a charge-free region inside which
Laplace’s equation holds.

Consider an infinitesimal segment ds of an electric field
line S, as in Fig. 1 (see Ref. [6]). ds carries an electric
field of intensity E, having components E* and EY along
the principal directions. We have

dzx
E? = | E| - = £l 6%,
(2)
dy
EV=|B|| & = | &,

where 6%, 6Y denote the components of a unit vector tan-
gent to the field line, and | E| = +/(E*)2 + (Ev)2. Tak-
ing partial derivatives of the field components in (2) in
the principal directions gives

ds

dx EX

FIG. 1. An infinitesimal segment ds of a field line S is
resolved into its components dz and dy. ds carries a field of
intensity E.
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The field intensity HE || has partial derivatives given by
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(the sum of the squares of the direction cosines) has been
used.

To evaluate 0E®/0y and OFEY/dz, we note that the
analytic solution V of Laplace’s equation in rectangular
coordinates is separable and can be expressed as a sum
of products [7]

V=XiY1+X2Yo+:--,

where X, and Y,, are functions of z and y, respectively.
Thus we have
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From Egs. (5) and (7),
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Now, we note that Lapla.ce s equation
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can be written as
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Hence, from Egs. (9), (8), and (6)
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From Egs. (10) and (3), we see that
o\ E| 96*
v - =
o B =~ I1B|
or
o\ E|| 06% 0z
A2 B —L. 11
5y = I1El s ()
Similarly,
ollEl _ 06¥/0y

oz~ W =

To understand these relations, consider an equipotential
line V and a field line E normal to V at a given point.
For an arbitrarily oriented coordinate system X-Y (as
in Fig. 2, where the direction cosines 6%, Y are given by
6% = cosf = siny, 6Y = cosy = sinh), Eq. (11) gives
the first partial derivative of the electric-field intensity in
one direction (for instance, 0||E||/8y) as a function only
of the first derivative of the direction cosine along the
orthogonal direction (in this case, 86* /0z).

To relate (11) and its 3D counterpart to formula (1),
observe first that in 2D, formula (1) is given along the
Y direction by 9| E||/8y = —| E||(1/R), where R is the
radius of curvature of the equipotential surface in 2D.
Now, we observe that
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The last expression is precisely the definition of curvature
for a planar curve.

If the coordinate system is selected such that the
Y axis is taken along the electric-field direction, then
dy/dz = di/ds = 1/R defines the curvature of the
equipotential surface V, where s is the arc length of the
curve. This selection of axes reproduces Eq. (1) in 2D.
For other orientations of the coordinate system dvy/dz is

FIG. 2. The field F is normal to the equipotential line V'
at all points. At the point considered, E is resolved into an
arbitrary coordinate system X —Y'; the derivative of the field
intensity in one direction (here Y) is given in terms of the
derivative of the direction cosine in the orthogonal direction.
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not a measure of curvature; however, Eq. (11) enables
the computation of 9| E||/dy in such cases.

Comparable expressions can be derived in three dimen-
sions; this is summarized in the Appendix. The resulting
formula (A10) relates the partial derivative of the field
strength in an arbitrary direction z to derivatives of the
direction cosines in the other two ordinate directions. In
the special case where field derivative is taken in the field
direction (i.e., z aligns with E, and 6 = 1), then both
z and y are normal to E, so the direction cosines §* and
6Y = 0. This yields the form

lE| || 66““ 66
8z ay

Equation (1) is recovered by noting that the two quan-
tities 86% /O0x, and 88Y /Oy represent the reciprocal of the
two principal radii of curvature of the equipotential sur-
face.

APPENDIX

In three dimensions, we have
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By writing Laplace s equation in the form
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and adding the three independent equations in (Al), we
obtain
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Now, we rewrite the last equation in (A1) as
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By using the expression
|E|l = v/(E=)2 + (Ev)2 + (E#)?, we obtain
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from which Eq. (A3) can be written as
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where the identity

(6% + (6¥)* + (5%)% =1
and the symmetry relations
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have been used. By using the first two equations in (A4),
Eq. (A5) can be further manipulated to give

OIE| | OlEl

—||E||?-§i = 6% +6Y——+ (6’”)2
0z Oz Oy oy
OE*® OE® OFEVY
AV i v ¥ ¥} et
+(5)63: 66(6y+8x>'
(A6)
Now, by using the relations
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the quantity 6z6y(5E”/6y+8Ey/6:r) in Eq. (A6) can be
written as
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which, by use of the relations in (Al), can be further
expressed as
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Substituting from (A7) into (A6), we get
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From Egs. (A2) and (A8), we see that
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This is the desired form of the general equation in three
dimensions.
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